Mecánica Cuántica

Semestre 2020-2

Prof: Asaf Paris Mandoki

Ayud: Leonardo Uhthoff Rodríguez

Tarea 5 Entrega: 27/05/2020

Para esta tarea usaremos la notación de suma de momentos angulares que usamos en clase. En la que

$$\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$$

cuyos números cuánticos asociados son j, m, j_1, m_1 y j_2, m_2 respectivamente.

Ejercicio 1: Suma de momentos angulares

20 Puntos

Al sumar dos momentos el número cuántico de magnitud de momento angular total j cumple que:

$$|j_1 - j_2| \le j \le j_1 + j_2.$$

En clase demostramos la cota superior argumentando que

$$j_{\text{max}} = m_{\text{max}} = m_{1 \text{max}} + m_{2 \text{max}} = j_1 + j_2.$$

Sin embargo, quedó pendiente mostrar la cota inferior. Muestra que $|j_1 - j_2| \leq j$ para que el número de elementos en las bases $\{|j_1 j_2 j m\rangle\}$ y $\{|j_1 m_1 j_2 m_2\rangle\}$ sea el mismo. *Nota:* puedes usar que $j \leq j_1 + j_2$.

Ejercicio 2: Conumtador de momento angular

10 Puntos

- 1. Calcula $\left[J^2,J_{1z}\right]$ y $\left[J^2,J_{2z}\right]$. ¿Conmutan estos operadores?
- 2. Usa los resultados del inicio anterior para mostrar que $[J^2, J_z] = 0$.

Ejercicio 3: Suma de momentos angulares con $j_1 = 1$ y $j_2 = 1$

25 Puntos

Considera dos momentos angulares \mathbf{J}_1 y \vec{J}_2 cuya magnitud es $j_1=j_2=1$.

- a. Enlista todos los elementos de la base de eigenvectores comunes de J_1^2 , J_{1z} , J_2^2 , J_{2z} .
- b. Enlista todos los elementos de la base de eigenvectores comunes de $J_1^2,\,J_2^2,\,J^2,\,J_z.$
- c. Escribe $|j_1=1,j_2=1,j=2,m=2\rangle$ y $|j_1=1,j_2=1,j=2,m=-2\rangle$ en términos de la base $|j_1 m_1 j_2 m_2\rangle$.
- d. Encuentra $|j_1=1,j_2=1,j=2,m=0\rangle$ en términos de la base $|j_1 m_1 j_2 m_2\rangle$ usando el operador de descenso J_- .

e. Escribe $|j_1=1,j_2=1,j=2,m=0\rangle$ en términos de la base $|j_1 m_1 j_2 m_2\rangle$ usando tu tabla/programa preferido para obtener los coeficientes de Clebsch-Gordan. Indica qué utilizaste.

Ejercicio 4: Operador de permutación

15 Puntos

El operador de permutación que intercambia el estado de dos sistemas cuánticos está definido por

$$P_{12} |\alpha\beta\rangle = |\beta\alpha\rangle$$
,

donde la primera posición del ket corresponde al primer sistema y la segunda posición corresponde al segundo sistema. Considerando dos sistemas de dos niveles, la base ortonormal del espacio de estados se puede escribir como

$$\{ |++\rangle, |+-\rangle, |-+\rangle, |--\rangle \}.$$

Escribe la representación matricial de P_{12} .

Ejercicio 5: Dos espines

30 Puntos

Considera un sistema conformado por partículas con espín 1/2 de las cuales ignoramos sus variables orbitales. El Hamiltoniano del sistema es

$$H = \omega_1 S_{1z} + \omega_2 S_{2z}$$

donde S_{1z} y S_{2z} son los operadores de proyección usuales y ω_1 y ω_2 son constantes reales.

a. El estado inicial del sistema en t=0 es

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}[|+-\rangle + |-+\rangle]$$

al tiempo t se mide el observable S^2 . ¿Qué resultados se pueden obtener?;Con qué probabilidad se obtiene cada resultado?

b. Para un estado inicial arbitrario, ¿Qué frecuencias de oscilación aparecen en la evolución de $\langle S^2 \rangle$?