Mecánica Cuántica

Semestre 2025-2

Prof: Asaf Paris Mandoki

Ayud: Edgar Giovanni Alonso Torres

Ayud: Alberto Hernández López

Tarea 4 Entrega: indefinida

Ejercicio 1: Teorema del Virial

1 pts

Muesta usando los operadores de escalera \hat{a} y \hat{a}^{\dagger} que si un oscilador armónico se encuentra en un egienestado de energía, obedece la relación

$$\left\langle \hat{T}\right\rangle =\left\langle \hat{V}\right\rangle ,$$

donde \hat{T} y \hat{V} son los operadores de energía cinética y potencial respectivamente.

Ejercicio 2: Estados de oscilador armónico

2 pts

Considera un oscilador armónico de masa m y frecuencia angular $\omega.$ Su estado inicial normalizado es

$$|\psi(0)\rangle = \sum_{n} c_n |\phi_n\rangle,$$

donde $|\phi_n\rangle$ son los eigenvectores del Hamiltoniano con eigenvalor $E_n = \hbar\omega(n+1/2)$.

- a. ¿Cuál es la probabilidad \mathcal{P} de que al medir la energía al tiempo t > 0 obtengamos un resultado mayor que $2\hbar\omega$? Cuando $\mathcal{P} = 0$ ¿Qué coeficientes c_n son distintos de cero?
- b. De ahora en adelante, supongamos que sólo c_0 y c_1 son distintos de cero. Escribe la condición de normalización para $|\psi(0)\rangle$ y el valor esperado $\langle H\rangle$ en términos de c_0 y c_1 . Agregando el requisido de que $\langle H\rangle = \hbar\omega$, calcula $|c_0|^2$ y $|c_1|^2$.

Ejercicio 3: Estados estacionarios del oscilador armónico

2 pts

Considera un oscilador armónico cuántico con frecuencia ω y masa m.

- a. Si se encuentra en el estado base $|\phi_0\rangle$, calcula probabilidad de encontrar a la partícula afuera de la región permitida clásicamente para una partícula con energía E_0 . Llegarás a una integral que no se puede resolver analíticamente usa el recurso que prefieras (web/programa/tabla) para calcularla.
- b. Usa el operador de ascenso \hat{a}^{\dagger} para encontrar una expresión para $\phi_1(x) = \langle x | \phi_1 \rangle$ a partir de $\phi_0(x)$.
- c. Usa el operador de ascenso \hat{a}^{\dagger} para encontrar una expresión para $\phi_2(x) = \langle x | \phi_2 \rangle$ a partir de $\phi_1(x)$.

Ejercicio 4: Estados coherentes

2 pts

Usando la notación usual de oscilador armónico:

a. Muestra directamente que un estado coherente

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |\phi_n\rangle,$$

con $\alpha \in \mathbb{C}$ es un egienvector del operador de descenso a.

- b. Calcula el valor esperado de X y P si el sistema de encuentra en el estado coherente $|\alpha\rangle$.
- c. Calcula el valor esperado de X^2 y P^2 si el sistema de encuentra en el estado coherente $|\alpha\rangle$ y calcula $\Delta X \Delta P$.
- d. Muestra que si un oscilador armónico inicia en un estado coherente $|\psi(0)\rangle = |\alpha\rangle$, después de un tiempo t>0 el estado $|\psi(t)\rangle$ seguirá siendo un estado coherente. Es decir. seguirá siendo un eigenvector de \hat{a} pero con distinto eigenvalor. ¿Cuál es este nuevo eigenvalor?
- e. Usa los resultados anteriores para obtener $\langle X \rangle$ (t) y $\langle P \rangle$ (t) para un oscilador armónico cuya condición inicial es un estado coherente.
- f. Calcula el producto escalar $\langle \alpha | \alpha' \rangle$ entre dos estados coherentes. ¿Forman los estados coherentes una base ortonormal?

Ejercicio 5: Representación de momento

2 pts

Considera un oscilador armónico cuántico con frecuencia ω y masa m.

- a. Encuentra la función de onda en la representación de momento del estado base del oscilador armónico $\phi_0(p)$ usando $\hat{a} |\phi_0\rangle = 0$. Presenta tu respuesta de forma normalizada.
- b. Usa el operador de ascenso a^{\dagger} para encontrar una expresión para $\phi_1(p) = \langle p | \phi_1 \rangle$ a partir de $\phi_0(p)$.
- c. ¿Cómo se comparan $|\phi_0\rangle$ y $|\phi_1\rangle$ en la representaciones x y p?

Ejercicio 6: Paridad de estados

2 pts

Considera el operador de paridad $\hat{\Pi}$ cuyo efecto sobre un eigenvector de posición es transformarlo en el eigenvector de posición aosiciado al punto diametralmente opuesto respecto al cero. Es decir

$$\hat{\Pi} |x\rangle = |-x\rangle.$$

- a. Muestra que si $\psi(x)$ es la función de onda de posición asociada al estado $|\psi\rangle$ entonces la función de onda asociada a $\hat{\Pi}|\psi\rangle$ es $\psi(-x)$.
- b. Muestra que si $\psi(p)$ es la función de onda de momento asociada al estado $|\psi\rangle$ entonces la función de onda asociada a $\hat{\Pi} |\psi\rangle$ es $\psi(-p)$.
- c. Muestra que los eigenvalores de $\hat{\Pi}$ son ± 1 . (Hint: Muestra que $\hat{\Pi}$ es su propio inverso y aplica $\hat{\Pi}^2$ a un eigenvector de $\hat{\Pi}$).
- d. Comprueba que las funciones de onda de posición asociadas a egienvectores de $\hat{\Pi}$ son las funciones pares o impares.
- e. Muestra que $\hat{\Pi}$ conmuta con el hamiltoniano del oscilador armónico.
- f. ¿Qué implicación tienen los resultados anteriores sobre las eigenfunciones del hamiltoniano del oscilador armónico?