Mecánica Cuántica

Semestre 2023-2

Prof: Asaf Paris Mandoki

Ayud: Eduardo Esquivel Ramírez Ayud: Leonardo Uhthoff Rodríguez

Tarea 6 Entrega: 07/06/2023

Suma de momentos angulares

Para esta tarea usaremos la notación de suma de momentos angulares que usamos en clase. En la que

$$\vec{J} = \vec{J_1} + \vec{J_2}$$

cuyos números cuánticos asociados son $j,m,\,j_1,m_1$ y j_2,m_2 respectivamente.

Ejercicio 1: Suma de momentos angulares

En este ejercicio mostrarás que al sumar dos momentos angulares el número cuántico de magnitud de momento angular total j cumple que:

$$|j_1 - j_2| \le j \le j_1 + j_2.$$

a. Usando que $J_z=J_{1z}+J_{2z}$ y la relacón entre la magnitud de un momento angular y su proyección $(-j\leq m\leq j)$ muestra que el valor máximo que puede tener la magnitud de momento angular total es

$$j_{\text{max}} = m_{\text{max}} = m_{1_{\text{max}}} + m_{2_{\text{max}}} = j_1 + j_2.$$

b. Muestra que para que el número de elementos en las bases $\{|j_1 j_2 j m\rangle\}$ y $\{|j_1 m_1 j_2 m_2\rangle\}$ sea el mismo se debe cumplir que $|j_1 - j_2| \le j$. Nota: puedes usar que $j \le j_1 + j_2$.

Ejercicio 2: Conumtador de momento angular

En este ejercicio verás por qué se usa J_z para definir la la base de momento angular total y no, por ejemplo, J_{1z} o J_{2z} .

- a. Calcula $\left[J^2,J_{1z}\right]$ y adivina cuál es el valor de $\left[J^2,J_{2z}\right]$ ¿Conmutan estos operadores?
- b. Usa los resultados del inciso anterior para mostrar que $\left[J^2,J_z\right]=0.$

Ejercicio 3: Suma de momentos angulares con $j_1 = 1$ y $j_2 = 1$

Considera dos momentos angulares \vec{J}_1 y \vec{J}_2 cuya magnitud es $j_1 = j_2 = 1$.

- a. Enlista todos los elementos de la base de eigenvectores comunes de $J_1^2,\,J_{1z},\,J_2^2,\,J_{2z}$.
- b. Enlista todos los elementos de la base de eigenvectores comunes de J_1^2 , J_2^2 , J_2^2 , J_z .
- c. Escribe $|j_1=1,j_2=1,j=2,m=2\rangle$ y $|j_1=1,j_2=1,j=2,m=-2\rangle$ en términos de la base $|j_1\,m_1\,j_2\,m_2\rangle$. Explica tu respuesta.
- d. Encuentra $|j_1 = 1, j_2 = 1, j = 2, m = 0\rangle$ en términos de la base $|j_1 m_1 j_2 m_2\rangle$ usando el operador de descenso J_- y el resultado del inciso anterior.
- e. Escribe $|j_1=1,j_2=1,j=2,m=0\rangle$ en términos de la base $|j_1 m_1 j_2 m_2\rangle$ usando tu tabla/programa preferido para obtener los coeficientes de Clebsch-Gordan. Indica qué utilizaste.

Teoría de perturbaciones

Ejercicio 4: Oscilador anarmónico

Considera el hamiltoniano de oscilador armónico

$$H_0 = \frac{1}{2m}P^2 + \frac{1}{2}m\omega^2 X^2$$

con eigenvalores $E_n = \hbar \omega (n + 1/2)$ y eigenvectores $|\phi_n\rangle$. Este oscilador está sometido a una perturbación de la forma

$$W = \lambda \hbar \omega X^3 \left(\frac{m\omega}{\hbar}\right)^{3/2}.$$

- a) Escribe W en términos de a y a^{\dagger} y $N = a^{\dagger}a$.
- b) Encuentra cuáles elementos de matriz $\langle \phi_i | W | \phi_i \rangle$ de W son distintos de cero.
- c) Para el nivel n, calcula la corrección de la energía hasta segundo orden en λ debido a esta perturbación.
- d) Calcula la corrección a primer orden en λ para el eigenvector $|\phi_n\rangle$.

Ejercicio 5: Sistema de dos niveles

Considerar el hamiltoniano H_0 y la perturbación W dados por

$$H_0 = \hbar \begin{pmatrix} 0 & 0 \\ 0 & -\Delta \end{pmatrix}, \qquad W = \hbar \begin{pmatrix} 0 & \Omega \\ \Omega & 0 \end{pmatrix}.$$

Responda las siguientes preguntas (puedes auxiliarte con la computadora):

a) ¿Cuáles son los eigenvalores y egienvecotres de H_0 ?

- b) ¿Cuáles son los eigenvalores de $H_0 + W$ de acuerdo a la teoría de perturbaciones de primer y segundo orden?
- c) ¿Cuáles son los eigenvalores exactos de $H_0 + W$?
- d) Graficar **por computadora** los eigenvalores obtenidos en los incisos anteriores en función de Δ para distintos valores reales de Ω de tal forma que sea fácil comprar la solución exacta y la de teoría de perturbaciones (i.e. ponlas en la misma gráfica). ¿En qué región la solución por teoría de perturbaciones se aproxima bien a la solución exacta?