Mecánica Cuántica

Semestre 2023-2

Prof: Asaf Paris Mandoki

Ayud: Eduardo Esquivel Ramírez Ayud: Leonardo Uhthoff Rodríguez

Tarea 5 Entrega: 24/05/2022

Ejercicio 1: Estado de un espín

En clase hablamos acerca del operador asociado al observable de espín $\vec{S} = (S_x, S_y, S_z)$ donde, en la base de eigenvectores de S^2 y S_z denotados por

$$\{|s = 1/2, m_s = 1/2\rangle = |+\rangle, |s = 1/2, m_s = -1/2\rangle = |-\rangle\},\$$

las representaciones matriciales de las componentes son

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

A partir de estos operadores podemos obtener el observable de espín en una dirección arbitraria \vec{u} determinada por los ángulos θ y φ por medio de

$$\vec{S} \cdot \vec{u} = S_u = S_x \sin \theta \cos \varphi + S_y \sin \theta \sin \varphi + S_z \cos \theta$$

Muestra que

$$\begin{split} |+\rangle_u &= \cos\frac{\theta}{2} e^{-i\varphi/2} \, |+\rangle + \sin\frac{\theta}{2} e^{i\varphi/2} \, |-\rangle \\ |-\rangle_u &= -\sin\frac{\theta}{2} e^{-i\varphi/2} \, |+\rangle + \cos\frac{\theta}{2} e^{i\varphi/2} \, |-\rangle \end{split}$$

son los eigenvectores de S_n .

Ejercicio 2: Valores esperados de para j = 1

Considera un sistema con momento angular j=1, cuyo espacio de estados está generado por la base $\{|1,+1\rangle,|1,0\rangle,|1,-1\rangle\}$ de eigenvectores comunes a J^2 y J_z de la forma $|j,m\rangle$. Si el sistema se encuentra en el estado

$$|\psi\rangle = \alpha |1,1\rangle + \beta |1,0\rangle + \gamma |1,-1\rangle$$

con α , β y γ números complejos:

- a Calcula el valor esperado $\langle \vec{J} \rangle$ en términos de α , β y γ .
- b Encuentra una expresión para los valores esperados $\langle J_x^2 \rangle$, $\langle J_y^2 \rangle$ y $\langle J_z^2 \rangle$ en términos de α , β y γ .

Ejercicio 3: Relaciones de conmutación

Siguiendo la notación de suma de Einstein donde se suma sobre los índices repetidos (sin necesidad de poner el símbolo Σ) podemos escribir las componentes cartesianas de $\vec{L} = \vec{R} \times \vec{P}$ como $L_k = \varepsilon_{ijk} R_i P_j$ con ε_{ijk} el símbolo de Levi-Civita. Muestra las siguientes relaciones de conmutación:

a
$$[L_i, R_j] = i\hbar \varepsilon_{ijk} R_k$$

b
$$[L_i, P_i] = i\hbar \varepsilon_{ijk} P_k$$

c
$$\left[L_i, P^2\right] = \left[L_i, R^2\right] = \left[L_i, \vec{R} \cdot \vec{P}\right] = 0$$

Ejercicio 4: Cambio de eje de cuantización

Considera un sistema físico arbitrario cuyo espacio de estados de 4 dimensiones se genera por los cuatro eigenvectores comunes de J^2 y J_z para $|j, m_z\rangle$ para $j \in \{0, 1\}$.

- a Escribe los cuatro eigenvectores comunes de J^2 y J_z , $|j, m_z\rangle$ para $j \in \{0, 1\}$. Aquí no tienes que hacer ningún cálculo, sólo hace falta que los enlistes.
- b Escribe los eigenvectores comunes a J^2 y J_x denotados por $|j,m_x\rangle$ en términos de los $|j,m_z\rangle$. Para hacer esto escribe a J_x como matriz en la base que escribiste en el inciso anterior. Al diagonalizar esta matriz encontrarás los eigenvectores de J_x en términos de los eigenvectores de J_z . ¿Cuáles son los eigenvaores de J_x ?

(Recuerda que puedes auxiliarte de una computadora para diagonalizar)

Ejercicio 5: Desviación RMS en momento angular

Considerando un eigenestado de momento angular arbitrario $|\ell, m\rangle$. Encuentra: $\langle L_x \rangle$, $\langle L_y \rangle$, $\langle L_z \rangle$, $\langle L_x^2 \rangle$, $\langle L_y^2 \rangle$, $\langle L_z^2 \rangle$, $\langle L_z^2 \rangle$, $\langle L_z^2 \rangle$, $\langle L_z \rangle$

Ejercicio 6: Teorema Hellman-Feynman: observables de H

El Teorema de Hellman-Feynan es útil para calcular observables para el átomo de hidrógeno. Este teorema dice que si tenemos un Hamiltoniano $H(\lambda)$ que depende de un parámetro real λ y un eigenvector normalizado $|\psi(\lambda)\rangle$ de $H(\lambda)$ con eigenvalor $E(\lambda)$ entonces

 $\frac{\mathrm{d}}{\mathrm{d}\lambda}E(\lambda) = \langle \psi(\lambda) | \frac{\mathrm{d}}{\mathrm{d}\lambda}H(\lambda) | \psi(\lambda) \rangle.$

a Demuestra este teorema. (Hint: calcula la derivada de $H(\lambda) |\psi(\lambda)\rangle = E(\lambda) |\psi(\lambda)\rangle$ respecto a λ usando la regla usual de la derivada de un producto y multiplica por $\langle \psi(\lambda)|.$)

Una manera de calcular valores esperado como $\langle 1/r \rangle$ y $\langle 1/r^2 \rangle$ para el átomo de hidrógeno es calcular las integrales $\int R_{nl}(r) \frac{1}{r} R_{nl}(r) r^2 \, \mathrm{d}r$ y $\int R_{nl}(r) \frac{1}{r^2} R_{nl}(r) r^2 \, \mathrm{d}r$ respectivamente. El Teorema de Hellman-Feynman nos ofrece una alternativa ingeniosa a este cálculo. Considerando la ecuación radial para las funciones de onda, ésta tiene un Hamiltoniano de la forma

$$H_r = -\frac{\hbar^2}{2\mu} \frac{1}{r} \frac{d^2}{dr^2} r + \frac{\hbar^2 \ell(\ell+1)}{2\mu r^2} - \frac{e^2}{4\pi\epsilon_0 r},$$

donde notamos que tenemos un término proporcional a 1/r y otro a $1/r^2$.

- b Derivando H_r respecto a e vemos que podemos aislar el término 1/r. Usa esto, el teorema de Hellman-Feynman y los eigenvalores conocidos de hidrógeno para obtener una expresión para $\langle 1/r \rangle$ cuando el sistema se encuentra en un eigenestado del Hamiltoniano.
- c Calcula $\langle \frac{1}{r^2} \rangle$ cuando el sistema se encuentra en un eigenestado del Hamiltoniano usando el mismo método. En este caso es necesario derivar respecto a ℓ y recordar que $n=\ell+k$, donde k era una constante por lo que $\frac{\mathrm{d}n}{\mathrm{d}\ell}=1$.

Nota: en el planteamiento original de la ecuación e y ℓ eran parámetros fijos. Este método se aprovecha de considerarlos como variables.

+1

Ejercicio Extra 1: Operadores escalera de momento angular

En clase encontramos que los armónicos esféricos $Y_{\ell}^{m}(\theta,\varphi)$ con $m=\ell$ tienen la forma

$$Y_{\ell}^{\ell}(\theta,\varphi) = N \sin^{\ell} \theta e^{i\ell\varphi},$$

donde N es una constante de normalización.

- a. Calcula N para el caso $\ell=1$.
- b. Usa L_{-} para obtener $Y_1^0(\theta,\varphi)$ y $Y_1^{-1}(\theta,\varphi)$.