Física Atómica y Materia Condensada Semestre 2019-1

Prof: Asaf Paris Mandoki

Tarea 1 Entrega: 21 agosto 2018

Ejercicio 1 : Fundamentos de la Mecánica Cuántica

10 Puntos

Mostrar que la condición de hermiticidad de un operador es necesaria para garantizar que sus valores esperados sean reales.

Ejercicio 2: Matriz de densidad

10 Puntos

Mostrar que para un estado puro, que podemos escribir como $\rho = |\psi\rangle \langle \psi|$, el valor esperado definido como $\langle A \rangle = \text{Tr}[A\rho]$ se reduce al caso conocido $\langle A \rangle = \langle \psi | A | \psi \rangle$.

Ejercicio 3: Estados puros vs. mezclados

15 Puntos

Considere el espacio de Hilbert formado por la base $\{|0\rangle, |1\rangle\}$ y los estados definidicos por las matrices de densidad $\rho_0 = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|$ y $\rho_1 = |\psi\rangle \langle \psi|$ con $|\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$.

- 1. ¿Cuál es el valor esperado del observable definido por el operador $A=|0\rangle\,\langle 0|$ para los estados ρ_0 y ρ_1 ?
- 2. ¿Cuál es el valor esperado del observable definido por el operador $B = |\psi\rangle\langle\psi|$ para los estados ρ_0 y ρ_1 ?

Ejercicio 4: Operador densidad

15 Puntos

Explica cuál es la diferencia entre representar el estado de un sistema con un ket o con el operador de densidad.

Ejercicio 5: Teoría de perturbaciones

20 Puntos

Considerar el Hamiltoniano dado por

$$H = \left(\begin{array}{cc} 0 & 0 \\ 0 & \Delta \end{array}\right),\,$$

y una perturbación

$$W = \left(\begin{array}{cc} 0 & \Omega \\ \Omega & 0 \end{array} \right).$$

Responda las siguientes preguntas (puedes auxiliarte con la computadora):

1. ¿Cuáles son los eigenvalores y egienvecotres de H?

- 2. ¿Cuáles son los eigenvalores de H+W de acuerdo a la teoría de perturbaciones de primer y segundo orden?
- 3. ¿Cuáles son los eigenvalores exactos de H + W?
- 4. Graficar los eigenvalores obtenidos en los incisos anteriores en función de Δ para distintos valores reales de Ω .

Ejercicio 6 : Teoría de momento angular

15 Puntos

Encontrar la representación matricial de los operadores J_x , J_y , J_z en la base

$$\{ |j,m\rangle \text{ con } j=1/2 \text{ y } m=-1/2,1/2 \}$$

Sugerencia: Escriba J_x y J_y en términos de J_+ y J_- .

Ejercicio 7 : Suma de momento angular

15 Puntos

Mostrar que $\mathbf{J} = \mathbf{J}^{(1)} + \mathbf{J}^{(2)}$ es un operador que obedece las reglas de conmutación de un operador de momento angular suponiendo que $\mathbf{J}^{(1)}$ y $\mathbf{J}^{(2)}$ las obedecen.